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Neural cryptography is based on a competition between attractive and repulsive stochastic forces. A feed-
back mechanism is added to neural cryptography which increases the repulsive forces. Using numerical simu-
lations and an analytic approach, the probability of a successful attack is calculated for different model
parameters. Scaling laws are derived which show that feedback improves the security of the system. In
addition, a network with feedback generates a pseudorandom bit sequence which can be used to encrypt and
decrypt a secret message.
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I. INTRODUCTION

Neural networks learn from examples. When a system of
interacting neurons adjusts its couplings to a set of externally
produced examples, this network is able to estimate the rule
which produced the examples. The properties of such net-
works have successfully been investigated using models and
methods of statistical physics[1,2].

Recently this research program has been extended to
study the properties of interacting networks[3,4]. Two net-
works which learn the examples produced by their partner
are able to synchronize. This means that after a training pe-
riod the two networks achieve identical time dependent cou-
plings (synaptic weights). Synchronization by mutual learn-
ing is a phenomenon which has been applied to cryptography
[5,6].

To send a secret message over a public channel one needs
a secret key, either for encryption, decryption, or both. In
1976, Diffie and Hellmann have shown how to generate a
secret key over a public channel without exchanging any
secret message before. This method is based on the fact
that—up to now—no algorithm is known which finds the
discrete logarithm of large numbers by feasible computer
power [7].

Recently it has been shown how to use synchronization of
neural networks to generate secret keys over public channels
[5]. This algorithm, called neural cryptography, is not based
on number theory but it contains a physical mechanism: The
competition between stochastic attractive and repulsive
forces. When this competition is carefully balanced, two
partnersA andB are able to synchronize whereas an attack-
ing network E has only a very low probability to find the
common state of the communicating partners.

The security of neural cryptography is still being debated
and investigated[8–12]. In this paper we introduce a mecha-
nism which is based on the generation of inputs by feedback.
This feedback mechanism increases the repulsive forces be-
tween the participating networks, and the amount of the
feedback, the strength of this force, is controlled by an addi-
tional parameter of our model.

A measure of the security of the system is the probability
PE that an attacking network is successful. We calculatePE

obtained from the best known attack[8] for different model
parameters and search for scaling properties of the synchro-
nization time as well as for the security measure. It turns out
that feedback improves the security significantly, but it also
increases the effort to find the common key. When this effort
is kept constant, feedback only yields a small improvement
of security.

II. REPULSIVE AND ATTRACTIVE STOCHASTIC
FORCES

The mathematical model used in this paper is called a tree
parity machine(TPM), sketched in Fig. 1. It consists ofK
different hidden units, each of them being a perceptron with
an N-dimensional weight vectorwk. When a hidden unitk
receives anN-dimensional input vectorxk it produces the
output bit

sk = sgnswk ·xkd. s1d

TheK hidden unitssk define a common output bitt of the
total network by

t = p
k=1

K

sk. s2d

In this paper we consider binary input valuesxk,j P h−1,
+1j and discrete weightswk,j P h−L ,−L+1, . . . ,L−1,Lj,
where the indexj denotes theN components andk the K
hidden units.

FIG. 1. A tree parity machine withK=3 andN=4.
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Each of the two communicating partnersA andB has its
own network with an identical TPM architecture. Each part-
ner selects random initial weight vectorswk

Ast=0d andwk
Bst

=0d.
Both of the networks are trained by their mutual output

bits tA and tB. At each training step, the two networks re-
ceive common input vectorsxk and the corresponding output
bit t of its partner. We use the following learning rule.

(1) If the output bits are different,tAÞtB, nothing is
changed.

(2) If tA=tB;t only the hidden units are trained which
have an output bit identical to the common output,sk

A/B

=tA/B.
(3) To adjust the weights we consider three different

learning rules.
(i) Anti-Hebbian learning

wk
+ = wk − txkQssktdQstAtBd. s3d

(ii ) Hebbian learning

wk
+ = wk + txkQssktdQstAtBd. s4d

(iii ) Random walk

wk
+ = wk + xkQssktdQstAtBd. s5d

If any componentwk,j moves out of the interval −L , . . . ,L, it
is replaced by sgnswk,jdL.

Note that for the last rule, the dynamics of each compo-
nent is identical to a random walk with reflecting boundaries.
The only difference to usual random walks is that the dynam-
ics is controlled by the 2K global signalssk

A/B which, in turn,
are determined by the ensemble of random walks. Two cor-
responding components of the weights ofA andB receive an
identical inputxk,j, hence they move into the same direction
if the control signal allows both of them the move. As soon
as one of the two corresponding components hits the bound-
ary their mutual distance decreases. This mechanism finally
leads to complete synchronization,wk

Astd=wk
Bstd for all t

ù tsync.
On average, a common step leads to an attractive force

between the corresponding weight vectors. If, however, only
the weight vector of one of the two partners is changed the
distance between corresponding vectors increases, on aver-
age. This may be considered as a repulsive force between the
corresponding hidden units.

A learning step in at least one of theK hidden units occurs
if the two output bits are identical,tA=tB. In this case, there
are three possibilities for a given pair of hidden units:(1) an
attractive move forsk

A=sk
B=tA/B; (2) a repulsive move for

sk
AÞsk

B; (3) and no move at all forsk
A=sk

BÞtA/B.
We want to calculate the probabilities for repulsive and

attractive steps[8,13]. The distance between two hidden
units can be defined by their mutual overlap

rk =
wk

A ·wk
B

Îwk
A ·wk

AÎwk
B ·wk

B
. s6d

The probabilityek that a common randomly chosen input
xk leads to a different output bitsk

AÞsk
B of the hidden unit is

given by [2]

ek =
1

p
arccosrk. s7d

The quantityek is a measure of the distance between the
weight vectors of the corresponding hidden units. Since dif-
ferent hidden units are independent, the valuesek determine
also the conditional probabilityPr for a repulsive step be-
tween two hidden units given identical output bits of the two
TPMs. In the case of identical distances,ek=e, one finds for
K=3

Pr = Pssk
A Þ sk

ButA = tBd =
2s1 − ede2

s1 − ed3 + 3s1 − ede2 . s8d

On the other side, an attackerE may use the same algo-
rithm as the two partnersA andB. Obviously, it will move its
weights only if the output bits of the two partners are iden-
tical. In this case, a repulsive step betweenE and A occurs
with probability Pr =e where nowe is the distance between
the hidden units ofE andA.

Note that for both the partners and the attacker one has
the important property that the networks remain identical
after synchronization. When one has achievede=0 at some
time step, the distance remains zero forever, according to the
previous equations forPr. However, although the attacker
uses the same algorithm as the two partners, there is an im-
portant difference:E can only listen but it cannot influenceA
or B. This fact leads to the difference in the probabilities of
repulsive steps; the attacker has always more repulsive steps
than the two partners. For small distancese!1, the probabil-
ity Pr increases linear with the distance for the attacker but
quadratic for the two partners. This difference between learn-
ing and listening leads to a tiny advantage of the partners
over an attacker. The subtle competition between repulsive
and attractive steps makes cryptography feasible.

On the other side, there is always a nonzero probability
PE that an attacker will synchronize, too[11]. For neural
cryptography,PE should be as small as possible. Therefore it
is useful to investigate synchronization for different models
and to calculate their properties as a function of the model
parameters.

Here we investigate a mechanism which decreasesPE,
namely we include feedback in the neural networks. The
input vectorsxk are no longer common random numbers, but
they are produced by the bits of the corresponding hidden
units. Therefore the hidden units of the two partners no
longer receive an identical input, but two corresponding in-
put vectors separate with the number of training steps. To
allow synchronization, one has to reset the two inputs to
common values after some time interval.

For nonzero distancee.0, this feedback mechanism cre-
ates a sort of noise and increases the number of repulsive
steps. After synchronizatione=0, feedback will produce only
identical input vectors and the networks move with zero dis-
tance forever[14].
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Before we discuss synchronization and several attacking
scenarios, we consider the properties of the bit sequence gen-
erated by a TPM with feedback.

III. BIT GENERATOR

We consider a single TPM network withK hidden units,
as in the preceding section. We start withK random input
vectorsxk. But now, for each hidden unitk and for each time
step t, the input vector is shifted and the output bitskstd is
added to its first component[16]. Simultaneously, the weight
vectorwk is trained according to the anti-Hebbian rule, Eq.
(3). Consequently, the bit sequencetstd generated by the
TPM is given by the equation

tstd = p
k=1

K

sgnSo
j=1

N

wk,jstdskst − jdD . s9d

Similar bit generators were introduced in Ref.[17] and
the statistical properties of their generated sequences were
investigated[18]. Here we study the corresponding proper-
ties for our TPM with discrete weights.

The TPM network has 2KN possible input ands2L+1dKN

weight vectors. Therefore our deterministic finite state ma-
chine can only generate a periodic bit sequence whose length
l is limited by s4L+2dKN.

Our numerical simulations show that the average length
kll of the period indeed increases exponentially fast with the
sizeKN of the network, but it is much smaller than the upper
bound. ForK=3 andL.N we find kll~ s2.69d3N, indepen-
dent of the numberL of weight values.

The network takes some time before it generates the pe-
riodic part of the sequence. We find that this transient time
also scales exponentially with the system sizeKN. This
means that, for sufficiently large values ofN, say Nù100,
any simulation of the bit sequence remains in the transient
part and will never enter the cycle.

The bit sequence generated by a TPM withK.2 cannot
be distinguished from a random bit sequence. ForK=L=3
we have numerically calculated its entropy and found the
value ln 2 as expected from a truly random bit sequence. In
addition, we have performed several tests on randomness as
described by Knuth[19]. We did not find any correlations
between consecutive bits; the bit sequence passed all tests on
randomness within strict confidence levels.

Although the bit sequence passed many known tests on
random numbers we know that it is generated by a neural
network. Does this knowledge help to estimate correlations
of the sequence and to predict it? In fact, for a sequence
generated by a perceptron(TPM with K=1), another percep-
tron trained on the sequence could achieve an overlap to the
generator[3].

Consider a bit sequence generated by a TPM with the
anti-Hebbian rule. Another TPM(the “student”) is trained on
this sequence using the same rule. In addition, if the output
bit disagrees with the corresponding bit of the sequence, we
use the geometric method of Ref.[8] to perform a training
step.

Figures 2 and 3 show that forK=3 hidden units, it is not
possible to obtain an overlap to the generating TPM by learn-
ing the sequence. Only if the initial overlap between the
generator and the student is very large there is a nonzero
probability Psync that the student will synchronize with the
generator. If it does not synchronize, the overlap between
student and generator decays to zero.

Summarizing, a TPM network generates a pseudorandom
bit sequences which cannot be predicted from part of the
sequence. As a consequence, for cryptographic applications,
the TPM can be used to encrypt and decrypt a secret message
after it has generated a secret key.

IV. SYNCHRONIZATION

As shown in the preceding section, a TPM cannot learn
the bit sequence generated by another TPM since the two
input vectors are completely separated by the feedback
mechanism. This also holds for synchronization by mutual
learning: With feedback, two networks cannot be attracted to
an identical time dependent state. Hence, to achieve synchro-
nization, we have to introduce an additional mechanism
which occasionally resets the two inputs to a common vector.
This reset occurs whenever the system has producedR dif-
ferent output bits,tAstdÞtBstd. For R=0 we obtain synchro-
nization without feedback, which has been studied previ-

FIG. 2. ProbabilityPsync as a function of the fractionaw of
initially known weights, calculated from 1000 simulations withK
=3 andN=100.

FIG. 3. The average overlap between student and generator as a
function of the number of steps forK=3, L=5, andN=100.
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ously, and for large values ofR the system does not
synchronize. Accordingly, we have added a new parameter in
our algorithm which increases the synchronization time as
well as the difficulty to attack the system. In the following
two sections, we investigate synchronization and security of
the TPM with feedback quantitatively.

We consider two TPMsA andB which start with different
random weights and common random inputs. The feedback
mechanism is defined as follows.

(i) After each stept the input is shifted,xk,jst+1d
=xk,j−1std for j .1.

(ii ) If the output bits agree,tAstd=tBstd, the output of
each hidden unit is used as a new input bit,xk,1st+1d=skstd,
otherwise allK pairs of input bitsxk,1std are set to common
public random values.

(iii ) After R steps with different output,tAstdÞtBstd, all
input vectors are reset to public common random vectors,
xk,j

A st+1d=xk,j
B st+1d.

Feedback creates correlations between the weights and
the inputs. Therefore the system becomes sensitive to the
learning rule. We find that only for the anti-Hebbian rule, Eq.
(3), the components of the weights have a broad distribution.
The entropy per component is larger than 99 % of the maxi-
mal value lns2L+1d. For the Hebbian or random walk rule,
the entropy is much smaller, because the values of the
weights are pushed to the boundary values ±L. Therefore the
network with the anti-Hebbian rule offers less information to
an attack than the two other rules.

In Fig. 4 we have numerically calculated the average syn-
chronization time as a function of the numberL of compo-
nents for the anti-Hebbian rule. Obviously, there is a large
deviation from the scaling lawtsync~L2 as observed forR
=0. Our simulations for larger values ofN, which are not
included here, show that there exist strong finite size effects
which do not allow to derive a reliable scaling law from the
numerical data.

Fortunately, the limitN→` can be performed analyti-
cally. The simulation of theKN weights is replaced by a
simulation of ans2L+1d3 s2L+1d overlap matrix fa,b

k for
each hidden unitk which measures the fraction of weights
which are in statea for the TPM A and in stateb for B
[13,20].

We have extended this theory to the case of feedback. A
new variablelkstd is introduced which is defined as the frac-
tion of input componentsxk,j which are different between the
corresponding hidden units ofA and B. This variable
changes with time, and it influences the equation of motion
for the overlap matrixfa,b

k std. Details are described in the
Appendix.

Figure 5 shows the results of this semianalytic theory.
Now, in the limit ofN→`, the average synchronization time
can be fitted to increase with a power ofL, roughly propor-
tional toL2. The data indicate that only the prefactor but not
the exponent depends on the strengthR of the feedback; the
prefactor seems to increase linearly withR.

Hence, if the network is large enough, feedback has only
a small effect on synchronization. In the following section
we investigate the effect of feedback on the security of the
network: How does the probability that an attacker is suc-
cessful depend on the feedback parameterR?

V. ENSEMBLE OF ATTACKERS

Up to now, the most successful attack on neural cryptog-
raphy is the geometric attack[8,11]. The attackerE uses the
same TPM with an identical training step as the two partners.
That means, only fortA=tB the attacker performs a training
step. When its output bittE agrees with the two partners, the
attacker trains the hidden units which agree with the com-
mon output. FortEÞtA/B, however, the attacker first inverts
the output bitsk for the hidden unit with the smallest abso-
lute value of the internal field and then performs the usual
training step.

For the geometric attack the probabilityPE that an at-
tacker synchronizes withA andB is nonzero. Consequently,
if the attacker uses an ensemble of sufficiently many net-
works there is a good chance that at least one of them will
find the secret key.

We have simulated an ensemble of attackers using the
geometric attack for the two TPMs with feedback and anti-
Hebbian learning rule. Of course, each attacking network
uses the same feedback algorithm as the two partner net-
works. Figure 6 shows the results of our numerical simula-

FIG. 4. Average synchronization timetsync and its standard de-
viation as a function ofL, found from 10 000 simulation runs with
K=3 andN=10 000. The line 52L2 is a result of linear regression
for R=0.

FIG. 5. The synchronization timetsyncand its standard deviation
as a function ofL, averaged over 10 000 runs of the iterative equa-
tions for K=3.
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tions. The success probabilityPE decreases with the feed-
back parameterR. For the model parameters shown in Fig. 6
we find thatPE can be fitted to an exponential decrease with
L2,

PE ~ e−uL2
. s10d

The coefficientu increases linearly withR, as shown in
Fig. 7. The scaling[Eq. (10)], however, is a finite size effect.
For large system sizesN, the success probability decreases
exponentially withL instead ofL2,

PE ~ e−yL. s11d

This can be seen from the limitN→` which can be per-
formed with the analytic approach of the preceding section.
Now the dynamics of the system is described by a tensor
fa,b,e
k for the three networksA, B, andE and corresponding

variableslk
A,lk

B,lk
E. Details are given in the Appendix.

Figure 8 indicates the exponential scaling behavior[Eq.
(11)] for several values ofR. The coefficienty increases
linearly with R, as shown in Fig. 9.

These results show that feedback improves the security of
neural cryptography. The synchronization time, on the other
side, increases, too. Does the security of the system improve
for constant effort of the two partners?

This question is answered in Fig. 10 which shows the
probability PE as a function of the average synchronization

time, again for several values of the feedback parameterR.
On the logarithmic scale shown forPE, the security does not
depend much on the feedback. For constant effort to find the
secret key, feedback yields a small improvement of security,
only.

VI. CONCLUSIONS

Neural cryptography is based on a delicate competition
between repulsive and attractive stochastic forces. A feed-
back mechanism has been introduced which amplifies the
repulsive part of these forces. We find that feedback in-
creases the synchronization time of two networks and de-
creases the probability of a successful attack.

The numerical simulations up toN=105 do not allow to
derive reliable scaling laws, neither for the synchronization
time nor for the success probability. But the limitN→`
which can be performed analytically indicates that the scal-
ing laws with respect to the numberL of component values
are not changed by the feedback, only the respective coeffi-
cients are modified. The average synchronization time in-
creases withL2 while the probabilityPE of a successful at-
tack decreases exponentially withL, for huge system sizesN.

Accordingly, the security of neural cryptography is im-
proved by including feedback in the training algorithm. But
simultaneously the effort to find the common key rises. We
find that for a fixed synchronization time, feedback yields a
small improvement of security, only.

FIG. 6. The success probabilityPE as a function ofL, averaged
over 10 000 simulations withK=3 andN=1000.

FIG. 7. The coefficientu as a function of the feedback param-
eterR, calculated from the results shown in Fig. 6.

FIG. 8. The success probabilityPE as a function ofL, found
from 10 000 runs of the iterative equations forK=3.

FIG. 9. The coefficienty as a function of the feedback parameter
R, calculated from the results shown in Fig. 8.

NEURAL CRYPTOGRAPHY WITH FEEDBACK PHYSICAL REVIEW E69, 046110(2004)

046110-5



After synchronization, the system is generating a pseudo-
random bit sequence which passed all tests on random num-
bers applied so far. Even if another network is trained on this
bit sequence it is not able to extract some information on the
statistical properties of the sequence. Consequently, the neu-
ral cryptography cannot only generate a secret key, but the
same system can be used to encrypt and decrypt a secret
message, as well.

APPENDIX: SEMIANALYTICAL CALCULATION
FOR SYNCHRONIZATION WITH FEEDBACK

In this appendix we describe our extension of the semi-
analytic calculation[13,20] to the case of feedback.

The effect of the feedback mechanism depends on the
fraction L of newly generated input elementsxk,j per step
and hidden unit. In the numerical simulations presented in
this paperL is equal toN−1. In this case the effect of the
feedback mechanism vanishes in the limitN→`. But it is
also possible to generate several input elementsxk,j per hid-
den unit and step. For that purpose one can multiply the
output bitsk with LN random numberszP h−1, +1j. As we
want to compare the results of the semianalytical approach
with simulations forN=1000, we setL=10−3 in the follow-
ing calculations.

In the case of two TPMs the development of the input
noiselk is given by

lk
+ = s1 − Ldlk + LQs− sk

Ask
BdQstAtBd. sA1d

At the beginning and afterR steps withtAÞtB all vari-
ableslk are set to zero(according to the algorithm described
in Sec. IV).

The input noise generated by the feedback mechanism
affects the output of the hidden units. An input element
with xk,j

B =−xk,j
B causes the same outputsk

B as a change of sign
in wk,j

B together with equal inputs for bothA andB. Therefore
the probabilityek,eff that two hidden units with overlaprk and
input errorlk disagree on the output bit is given by

ek,eff =
1

p
arccoss1 − 2lkdrk. sA2d

The distanceek,eff between the hidden units ofA andB is
used to choose the output bitssk

A and sk
B with the correct

probabilities in each step[13,20].
The feedback mechanism influences the equation of

motion for the overlap matrixfa,b
k , too. Here we use addi-

tional variablesDk
m=Qssk

mtmdQstAtBd to determine if the
weights of hidden unitk in the TPM ofmP hA,B,Ej change
sDk

m=1d or notsDk
m=0d. Therefore we are able to describe the

update of elements fa,b
k away from the boundary

s−L,a,b,Ld in only one equation:

fa,b
k+ =

1 − lk

2
sfa+Dk

A,b+Dk
B

k + fa−Dk
A,b−Dk

B
k d

+
1

2
lksfa+Dk

A,b−Dk
B

k + fa−Dk
A,b+Dk

B
k d. sA3d

The second term in Eq.(A3) which is proportional tolk
shows the repulsive effect of the feedback mechanism. Simi-
lar equations can be derived for elements on the boundary.

In the limit N→` the number of steps required to achieve
full synchronization diverges[9]. Because of that one has to
define a criterion which determines synchronization in order
to analyze the scaling oftsyncusing semianalytic calculations.
As in Ref. [13] we choose the synchronization criterion
r̄AB= 1

3ok=1
K rk

ABù0.9.
In order to analyze the geometric attack in the limitN

→` one needs to extend the semianalytical calculation to
three TPMs. In this case the development of the input noise
is given by the following equations:

lk
A+ = LQs− sk

Ask
BdQs− sk

Ask
EdQstAtBd + s1 − Ldlk

A,

sA4d

lk
B+ = LQs− sk

Bsk
AdQs− sk

Bsk
EdQstAtBd + s1 − Ldlk

B,

sA5d

lk
E+ = LQs− sk

Esk
AdQs− sk

Esk
BdQstAtBd + s1 − Ldlk

E.

sA6d

Analogical to Eq.(A2) the distanceek,eff
mn between two

hidden units can be calculated from the overlaprk
mn and the

variableslk
m andlk

n:

ek,eff
mn =

1

p
arccoss1 − 2lk

m − 2lk
ndrk

mn. sA7d

But for the geometric attack the attackerE needs to know
the local fieldshk

E. The joint probability distribution ofhk
A,

hk
B, andhk

E is given by[13]

Pshk
A,hk

B,hk
Ed =

e−s1/2dshk
A,hk

B,hk
EdCk

−1shk
A,hk

B,hk
EdT

Îs2pd3 detCk

. sA8d

The covariance matrix in this equation describes the cor-
relations between the three neural networks:

FIG. 10. The success probabilityPE as a function of the average
synchronization timetsync, calculated from the results shown in
Figs. 5 and 8.
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Ck = 1 Qk
A Rk,eff

AB Rk,eff
AE

Rk,eff
AB Qk

B Rk,eff
BE

Rk,eff
AE Rk,eff

BE Qk
E 2 . sA9d

From the tensorfa,b,e
k and the variableslk

m one can easily
calculate the elements ofCk:

Qk
A = o

a,b,e=−L

L

a2fa,b,e
k , sA10d

Qk
B = o

a,b,e=−L

L

b2fa,b,e
k , sA11d

Qk
E = o

a,b,e=−L

L

e2fa,b,e
k , sA12d

Rk,eff
AB = s1 − 2lk

A − 2lk
Bd o

a,b,e=−L

L

abfa,b,e
k , sA13d

Rk,eff
AE = s1 − 2lk

A − 2lk
Ed o

a,b,e=−L

L

aefa,b,e
k , sA14d

Rk,eff
BE = s1 − 2lk

B − 2lk
Ed o

a,b,e=−L

L

befa,b,e
k . sA15d

We use a pseudorandom number generator to determine
the values ofhk

A, hk
B, andhk

E in each step. The application of
the rejection method[21] ensures that the local fields have
the right joint probability distributionPshk

A,hk
B,hk

Ed. Then the
output bits sk

m of the hidden units are given bysk
m

=sgnshk
md. If tA=tBÞtE the hidden unitk with the smallest

absolute local fielduhk
Eu is searched and its outputsk

E is in-
verted (geometric attack). Afterwards the usual training of
the neural networks takes place.

The equation of motion for tensor elementsfa,b,e
k away

from the boundarys−L,a,b,e,Ld is given by

fa,b,e
k+ =

1 − lk
A − lk

B − lk
E

2
fa+Dk

A,b+Dk
B,e+Dk

E
k

+
1 − lk

A − lk
B − lk

E

2
fa−Dk

A,b−Dk
B,e−Dk

E
k +

1

2
lk

Afa−Dk
A,b+Dk

B,e+Dk
E

k

+
1

2
lk

Afa+Dk
A,b−Dk

B,e−Dk
E

k +
1

2
lk

Bfa+Dk
A,b−Dk

B,e+Dk
E

k

+
1

2
lk

Bfa−Dk
A,b+Dk

B,e−Dk
E

k +
1

2
lk

Efa+Dk
A,b+Dk

B,e−Dk
E

k

+
1

2
lk

Efa−Dk
A,b−Dk

B,e+Dk
E

k . sA16d

Similar equations can be derived for elements on the
boundary. An attacker is considered successful if one of the
conditionsr̄AEù0.9 or r̄BEù0.9 is achieved earlier than the
synchronization criterionr̄ABù0.9.
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