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Neural cryptography with feedback
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Neural cryptography is based on a competition between attractive and repulsive stochastic forces. A feed-
back mechanism is added to neural cryptography which increases the repulsive forces. Using numerical simu-
lations and an analytic approach, the probability of a successful attack is calculated for different model
parameters. Scaling laws are derived which show that feedback improves the security of the system. In
addition, a network with feedback generates a pseudorandom bit sequence which can be used to encrypt and
decrypt a secret message.
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[. INTRODUCTION obtained from the best known attaf®] for different model
Neural networks learn from examples. When a system oParameters and search for scaling properties of the synchro-
interacting neurons adjusts its couplings to a set of externallization time as well as for the security measure. It turns out
produced examples, this network is able to estimate the rulghat feedback improves the security significantly, but it also
which produced the examp|es_ The properties of such ne{ncreases the effort to find the common key. When this effort
works have successfully been investigated using models ariél kept constant, feedback only yields a small improvement
methods of statistical physid¢&,2]. of security.
Recently this research program has been extended to
study the properties of interacting netwoig4]. Two net-
works which learn the examples produced by their partner  1I. REPULSIVE AND ATTRACTIVE STOCHASTIC
are able to synchronize. This means that after a training pe- FORCES
riod the two networks achieve identical time dependent cou- . o .
p”ngs (Synaptic We|ght} Synchronization by mutual learn- The ma.thema“cal m0de| Used n thIS paper IS Ca."ed atree
ing is a phenomenon which has been applied to cryptographgarity maching(TPM), sketched in Fig. 1. It consists &
[5,6]. different hidden units, each of them being a perceptron with
To send a secret message over a public channel one nee@is N-dimensional weight vectow,. When a hidden unik
a secret key, either for encryption, decryption, or both. Inreceives anN-dimensional input vectoxy it produces the
1976, Diffie and Hellmann have shown how to generate autput bit
secret key over a public channel without exchanging any
secret message before. This method is based on the fact Ok = Wy - Xy (1)

that—up to now—no algorithm is known which finds the  thek pigden unitss, define a common output bitof the
discrete logarithm of large numbers by feasible computet,ial network by

power[7].

Recently it has been shown how to use synchronization of K
neural networks to generate secret keys over public channels =11 oy (2
[5]. This algorithm, called neural cryptography, is not based k=1

on number theory but it contains a physical mechanism: The : : . .
competition betyveen stochastic gtt)r/active and repulsive In this paper we cop3|der binary input valugg  {~1,
forces. When this competition is carefully balanced, two* L} and discrete weightsw;e{-L,-L+1,... L-1,L},
partnersA andB are able to synchronize whereas an attack\Vhere the index denotes the\ components and the K
ing network E has only a very low probability to find the hidden units.

common state of the communicating partners.

The security of neural cryptography is still being debated
and investigate@B—12. In this paper we introduce a mecha-
nism which is based on the generation of inputs by feedback.
This feedback mechanism increases the repulsive forces be-
tween the participating networks, and the amount of the
feedback, the strength of this force, is controlled by an addi-
tional parameter of our model.

A measure of the security of the system is the probability
Pe that an attacking network is successful. We calcuRte FIG. 1. A tree parity machine witkK=3 andN=4.
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Each of the two communicating partneksand B has its The probabilitye, that a common randomly chosen input
own network with an identical TPM architecture. Each part-x, leads to a different output bd't{j# UE of the hidden unit is
ner selects random initial weight vectorg(t=0) andw(t  given by[2]

=0).
Both of the networks are trained by their mutual output 1
bits 7 and 72. At each training step, the two networks re- €= —arccospy. (7)
ceive common input vectors, and the corresponding output m
bit 7 of its partner. We use the following learning rule. The quantitye, is a measure of the distance between the
(1) If the output bits are differents*# 72, nothing is  weight vectors of the corresponding hidden units. Since dif-
changed. ferent hidden units are independent, the valgedetermine

(2) If #=72=r only the hidden units are trained which also the conditional probability?, for a repulsive step be-
have an output bit identical to the common outpuﬁB tween two hidden units given identical output bits of the two
=B, TPMs. In the case of identical distancegr e, one finds for

(3) To adjust the weights we consider three differentK=3
learning rules.

(i) Anti-Hebbian learning 5 2(1-e¢)é

P, =P(o} # of|=P) = Lo+ 3l-92

(8)

W;:Wk— 7'Xk(0'k7')®(7'A7B). (3) .
On the other side, an attackErmay use the same algo-
(i) Hebbian learning rithm as the two partners andB. Obviously, it will move its
weights only if the output bits of the two partners are iden-
Wy, = Wy + %0 (0 O (A 75). (4) tical. In this case, a repulsive step betwdemand A occurs
with probability P, =€ where nowe is the distance between
(i) Random walk the hidden units oE andA.
Note that for both the partners and the attacker one has
Wy =Wy + X O (0 1) O (7 75). (5)  the important property that the networks remain identical

after synchronization. When one has achie¢ed at some

If any componenty,; moves out of the intervalls, ... L, it time_step, the d_istance remains zero forever, according to the
is replaced by sg j)L. previous equations foPr. However, although the att_acker_

Note that for the last rule, the dynamics of each compoYS€s the same algorithm as the two partners, there is an im-
nent is identical to a random walk with reflecting boundaries POrtant differencet can only listen but it cannot influence
The only difference to usual random walks is that the dynam®’ B- This fact leads to the difference in the probabilities of
ics is controlled by the R global signalss’® which, in turn, repulsive steps; the attacker has always more repulsive steps
are determined by the ensemble of random walks. Two cor’@n the two partners. For small distanees1, the probabil-
responding components of the weightsto&ndB receive an 1ty Pr increases linear with the distance for the attacker but
identical inputx, j, hence they move into the same direction quadratic for the two partners. This difference between learn-
if the control signal allows both of them the move. As sooniNd and listening leads to a tiny advantage of the partners
as one of the two corresponding components hits the boun@®Ver an attacker. The subtle competition between repulsive

ary their mutual distance decreases. This mechanism finalignd attractive steps makes cryptography feasible. 3
leads to complete synchronizatiow{j(t):WE(t) for all t On the other side, t'here is alwgys a nonzero probability
>t Pe that an attacker will synchronize, tdd1]. For neural

%’?r average, a common step leads to an attractive forcféryptographyP e should be as small as possible. Therefore it

between the corresponding weight vectors. If, however, onlyS USeful to investigate synchronization for different models
the weight vector of one of the two partners is changed th@”d to calculate their properties as a function of the model
distance between corresponding vectors increases, on av&2rameters.

age. This may be considered as a repulsive force between the Here we .investigate a mechanism which decredtgs
corresponding hidden units namely we include feedback in the neural networks. The

Alearning step in at least one of thehidden units occurs  NPUt Vectors are no longer common random numbers, but
if the two output bits are identicat=75. In this case, there they are produced by Fhe bits O.f the corresponding hidden
are three possibilities for a given pair of hidden un{fi:an units. Thergfore the h'.ddef‘ units of the two partners no
attractive move foro=B=~B; (2) a repulsive move for longer receive an identical input, but two corresponding in-
o+ B (3) and no rlr(mvé at aII’ forrA= B AB put vectors separate with the number of training steps. To

k k» k™ Yk '

We want to calculate the probabilities for repulsive andaIIOW synchronization, one has to reset the two inputs to

attractive stepg8,13. The distance between two hidden common values ther some time interval. .
units can be defined by their mutual overlap For nonzero distance> 0, this feedback mechanism cre-

ates a sort of noise and increases the number of repulsive

A B steps. After synchronizatiog= 0, feedback will produce only

= W - Wy (6) identical input vectors and the networks move with zero dis-
v’w{? . Wﬁ\"WE . WE tance forevef14].
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Before we discuss synchronization and several attacking WO
scenarios, we consider the properties of the bit sequence gen- [ e L=3
erated by a TPM with feedback. 08 — =5
0.61
lll. BIT GENERATOR Pone f
0.4
We consider a single TPM network witd hidden units, I
as in the preceding section. We start wikhrandom input 02k
vectorsx,. But now, for each hidden unit¢and for each time . ,
stept, the input vector is shifted and the output bif(t) is 00 L e e
added to its first componeft6]. Simultaneously, the weight 075 080 085 a 090 095 100

w

vectorw, is trained according to the anti-Hebbian rule, Eq.
(3). Consequently, the bit sequeneét) generated by the FIG. 2. ProbabilityPs,c as a function of the fractiom,, of

TPM is given by the equation initially known weights, calculated from 1000 simulations wih
=3 andN=100.
K N
m(t) = kﬂlsg Elwk,j(t)lfk(t - J)>- (9) Figures 2 and 3 show that f&¢=3 hidden units, it is not
= J:

possible to obtain an overlap to the generating TPM by learn-

Similar bit generators were introduced in Rgf7] and  ing the sequence. Only if the initial overlap between the
the statistical properties of their generated sequences wegenerator and the student is very large there is a nonzero
investigated[18]. Here we study the corresponding proper- probability Py . that the student will synchronize with the
ties for our TPM with discrete weights. generator. If it does not synchronize, the overlap between

The TPM network has'® possible input and2L+1)%N  student and generator decays to zero.
weight vectors. Therefore our deterministic finite state ma- Summarizing, a TPM network generates a pseudorandom
chine can only generate a periodic bit sequence whose lengfit sequences which cannot be predicted from part of the
| is limited by (4L +2)KN, sequence. As a consequence, for cryptographic applications,

Our numerical simulations show that the average lengtihe TPM can be used to encrypt and decrypt a secret message
(1) of the period indeed increases exponentially fast with theafter it has generated a secret key.
sizeKN of the network, but it is much smaller than the upper
bound. ForK=3 andL >N we find (1)« (2.69°N, indepen-
dent of the numbeL. of weight values.

The network takes some time before it generates the pe- As shown in the preceding section, a TPM cannot learn
riodic part of the sequence. We find that this transient timghe bit sequence generated by another TPM since the two
also scales exponentially with the system skB. This input vectors are completely separated by the feedback
means that, for sufficiently large values Nf sayN=100, mechanism. This also holds for synchronization by mutual
any simulation of the bit sequence remains in the transierfearning: With feedback, two networks cannot be attracted to
part and will never enter the cycle. an identical time dependent state. Hence, to achieve synchro-

The bit sequence generated by a TPM whik-2 cannot nization, we have to introduce an additional mechanism
be distinguished from a random bit sequence. KeiL=3  which occasionally resets the two inputs to a common vector.
we have numerically calculated its entropy and found theThis reset occurs whenever the system has prodB&cdid-
value In 2 as expected from a truly random bit sequence. Ifierent output bitsg(t) # 75(t). For R=0 we obtain synchro-
addition, we have performed several tests on randomness agation without feedback, which has been studied previ-
described by Knuttj19]. We did not find any correlations
between consecutive bits; the bit sequence passed all testsor 1.0 — —

IV. SYNCHRONIZATION

randomness within strict confidence levels. - 4 =09
Although the bit sequence passed many known tests on 0.8 e a =07
random numbers we know that it is generated by a neural 3 a =05

network. Does this knowledge help to estimate correlations 0.6
of the sequence and to predict it? In fact, for a sequence pAE

T
|

generated by a perceptréhPM with K=1), another percep- 04F "-\,f\ .
tron trained on the sequence could achieve an overlap to the 1
generatof3]. 0.2F .
Consider a bit sequence generated by a TPM with the NN
ar]tl—Hebblan ruIe: Another TPNthe “student? is tra_uned on 00760 00 360 ) =00
this sequence using the same rule. In addition, if the output number of steps
bit disagrees with the corresponding bit of the sequence, we
use the geometric method of R¢8] to perform a training FIG. 3. The average overlap between student and generator as a
step. function of the number of steps fé¢=3, L=5, andN=100.
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FIG. 4. Average synchronization timg,,cand its standard de- o . L
viation as a function of., found from 10 000 simulation runs with FIG. 5. The synchronization timtgy,cand its standard deviation

K=3 andN=10 000. The line 522 is a result of linear regression as a function oL, averaged over 10 000 runs of the iterative equa-
for R=0. tions for K=3.

ously, and for large values oR the system does not e have extended this theory to the case of feedback. A
synchronize. Accordingly, we have added a new parameter ife\y variablen,(t) is introduced which is defined as the frac-

our algorithm which increases the synchronization time ag,, input componentg, ; which are different between the
well as the difficulty to attack the system. In the following cf‘orresponding hidden u’hits oA and B. This variable

two sections, we investigate synchronization and security o L2 o : .
the TPM with feedback quantitatively. changes with time, and it influences the equation of motion

. k . N .
We consider two TPM# andB which start with different 0" the overlap matrixfz ,(t). Details are described in the
random weights and common random inputs. The feedbacRPpPendix.

mechanism is defined as follows. Figure 5 shows the results of this semianalytic theory.
(i) After each stept the input is shifted,x;(t+1) Now, in the limit of N— oo, the average synchronization time
=Xyj-a(t) for j>1. ’ can be fitted to increase with a power lofroughly propor-

(i) If the output bits agree/A(t)=75(t), the output of tionalto L2. The data indicate that only the prefactor but not
each hidden unit is used as a new input kjt,(t+1) = o (t), the exponent depends on the strengtbf the feedback; the

otherwise allK pairs of input bitsx, ,(t) are set to common Prefactor seems to increase linearly with
public random values. Hence, if the network is large enough, feedback has only

(iii) After R steps with different outputA(t) # (1), all a small effect on synchronization. In the following section

input vectors are reset to public common random vectors© |nve§t|gate the effect of feeqpack on the securlty of the
A _ B network: How does the probability that an attacker is suc-
xk'j(t+ 1)—xk’j(t+ 1).

Feedback creates correlations between the weights anctf ssful depend on the feedback paramBer

the inputs. Therefore the system becomes sensitive to the
learning rule. We find that only for the anti-Hebbian rule, Eq.
(3), the components of the weights have a broad distribution.
The entropy per component is larger than 99 % of the maxi- Up to now, the most successful attack on neural cryptog-
mal value If2L+1). For the Hebbian or random walk rule, raphy is the geometric attadB,11]. The attackeE uses the
the entropy is much smaller, because the values of theame TPM with an identical training step as the two partners.
weights are pushed to the boundary values Eherefore the That means, only for*=7" the attacker performs a training
network with the anti-Hebbian rule offers less information tostep. When its output b agrees with the two partners, the
an attack than the two other rules. attacker trains the hidden units which agree with the com-
In Fig. 4 we have numerically calculated the average synmon output. For®# 7B, however, the attacker first inverts
chronization time as a function of the numbeiof compo-  the output bitoy for the hidden unit with the smallest abso-
nents for the anti-Hebbian rule. Obviously, there is a largdute value of the internal field and then performs the usual
deviation from the scaling lavi,,<L? as observed foR  training step.
=0. Our simulations for larger values &f, which are not For the geometric attack the probabiliBg that an at-
included here, show that there exist strong finite size effecttacker synchronizes witA andB is nonzero. Consequently,
which do not allow to derive a reliable scaling law from the if the attacker uses an ensemble of sufficiently many net-
numerical data. works there is a good chance that at least one of them will
Fortunately, the limitN—<« can be performed analyti- find the secret key.
cally. The simulation of theKN weights is replaced by a We have simulated an ensemble of attackers using the
simulation of an(2L+1) X (2L+1) overlap matrixf‘;’b for geometric attack for the two TPMs with feedback and anti-
each hidden unik which measures the fraction of weights Hebbian learning rule. Of course, each attacking network
which are in statea for the TPM A and in stateb for B uses the same feedback algorithm as the two partner net-
[13,20. works. Figure 6 shows the results of our numerical simula-

V. ENSEMBLE OF ATTACKERS
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FIG. 8. The success probabilifyz as a function ofL, found
FIG. 6. The success probabiliBg as a function oL, averaged from 10 000 runs of the iterative equations o 3.

over 10 000 simulations witKk=3 andN=1000.

time, again for several values of the feedback paranfeter
tions. The success probabilifyz decreases with the feed- On the logarithmic scale shown f&¥, the security does not
back parameteR. For the model parameters shown in Fig. 6 depend much on the feedback. For constant effort to find the
w2e find thatPg can be fitted to an exponential decrease withsecret key, feedback yields a small improvement of security,
L<, only.

Pe oc e, (10)

The coefficientu increases linearly withr, as shown in Neural cryptography is based on a delicate competition
Elc?r. |7a'rTgesnge“rﬂqsga(gl?r]{ehgﬁ\gs' 'Sragmt')t.?ts'zde effect. between repulsive and attractive stochastic forces. A feed-
ge system sIzes, 9 probablility decreaseSpack mechanism has been introduced which amplifies the
exponentially withl_ instead ofl.% repulsive part of these forces. We find that feedback in-
(11) creases the synchronization time of two networks and de-
creases the probability of a successful attack.

This can be seen from the limit— o which can be per- The numerical simulations up td=10° do not allow to
formed with the analytic approach of the preceding sectionderive reliable scaling laws, neither for the synchronization
Now the dynamics of the system is described by a tensotime nor for the success probability. But the limt— oo
f';b,e for the three network#\, B, andE and corresponding which can be performed analytically indicates that the scal-
variables\i, AP, \{. Details are given in the Appendix. ing laws with respect to the numberof component values

Figure 8 indicates the exponential scaling behayieg.  are not changed by the feedback, only the respective coeffi-
(11)] for several values oR. The coefficienty increases cients are modified. The average synchronization time in-
linearly with R, as shown in Fig. 9. creases witl.2 while the probabilityPg of a successful at-

These results show that feedback improves the security dick decreases exponentially wlthfor huge system sizés.
neural cryptography. The synchronization time, on the other Accordingly, the security of neural cryptography is im-
side, increases, too. Does the security of the system improyeroved by including feedback in the training algorithm. But
for constant effort of the two partners? simultaneously the effort to find the common key rises. We

This question is answered in Fig. 10 which shows thefind that for a fixed synchronization time, feedback yields a
probability Pz as a function of the average synchronizationsmall improvement of security, only.

VI. CONCLUSIONS

PE S e_yL .
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10T T T T T The distance ¢ between the hidden units éf andB is
E oR= 0 1 used to choose the output bitg and of with the correct
I%% o Ez 38 1 probabilities in each ste[d3,20. '
10k 2oy A R= 60 The feedback mechams_m influences the equatlon of
F 9% SR-B0 motion for the overlap matrixt, too. Here we use addi-
P | o ] tional variablesAf'=0 (o7 O(77°) to determine if the
Al ® Eg 1 weights of hidden unik in the TPM ofm e {A, B, E} change
10 <o (AF'=1) or not(A'=0). Therefore we are able to describe the
i q ] update of elementsf';b away from the boundary
A (-L<a,b<Ll) in only one equation:
1070 500 1000 1500 2000 2500 3000
sync 1-\
fh = "5 (faapnad * Facapoa9)

FIG. 10. The success probabiliBg as a function of the average
synchronization timets,,, calculated from the results shown in 1 K K
Figs. 5 and 8. + Ekk(faﬂfk\bﬂg + fa_A/kA,bJ,AE)- (A3)

After synchronization, the system is generating a pseudo- 1he second term in EJA3) which is proportional toy,
random bit sequence which passed all tests on random nurgows the repulsive effect of the feedback mechanism. Simi-
bers applied so far. Even if another network is trained on thi¢a" €quations can be derived for elements on the boundary.
bit sequence it is not able to extract some information on the In the limit N— oo the number of steps required to achieve
statistical properties of the sequence. Consequently, the nefill synchronization divergef9]. Because of that one has to
ral cryptography cannot only generate a secret key, but tnhdefine a criterion which determines synchronization in order

same system can be used to encrypt and decrypt a sect@tanalyze the scaling @f,ncusing semianalytic calculations.
message, as well. As in Ref. [13] we choose the synchronization criterion

PB=33K peB=0.0. _ _ N
In order to analyze the geometric attack in the limit
APPENDIX: SEMIANALYTICAL CALCULATION —o one needs to extend the semianalytical calculation to
FOR SYNCHRONIZATION WITH FEEDBACK three TPMs. In this case the development of the input noise
In this appendix we describe our extension of the semiis given by the following equations:
analytic calculatiorf13,2Q to the case of feedback.
The effect of the feedback _mechamsm depends on the N = AO (= oL oD)O (- oL oD)O(AB) + (1 - AL,
fraction A of newly generated input elementg; per step

and hidden unit. In the numerical simulations presented in (A4)
this paperA is equal toN™ . In this case the effect of the

feedback mechanism vanishes in the lilNit-%. But it is B+ _ _ B _ B E _ANB

also possible to generate several input elemegtper hid- N =A0(- 0 a)O (- ogol)O(47%) +(1 - AN,
den unit and step. For that purpose one can multiply the (AS5)

output bitay, with AN random numberge {-1, +1}. As we

want to compare the results of the semianalytical approach B+ _ E A E B E

with simulations forN=1000, we set\ =107 in the follow- N = AB(= 0 0l)O(= o) O(FA7°) + (1 - Ay

ing calculations. (AB)
In the case of two TPMs the development of the input

. H mn
noise\, is given by Analogical to Eg.(A2) the distancee, o between two

hidden units can be calculated from the overidp and the
H m n.
A= (1= AN+ AO (= oRoB)O(AE). (A1) variables\,' and \y:

At the beginning and afteR steps with7*+ 72 all vari- o1 " -
ables\, are set to zergaccording to the algorithm described ket = arcCosl — 2= 20)pi" (AT)
in Sec. V).

The input noise generated by the feedback mechanism But for the geometric attack the attackeneeds to know
affects the output of the hidden units. An input elementthe local fieldshi. The joint probability distribution ohy,
with Xg;=—x¢; causes the same outpsff as a change of sign hg, andhy is given by[13]
in WE- together with equal inputs for bothandB. Therefore
the probabilitye, ¢ that two hidden units with overlag, and N e (Vg G g ) T
input error\, disagree on the output bit is given by P(hi,he,he) =

A8
V(2m)3 detCy, (A8)

The covariance matrix in this equation describes the cor-

1
€ ot = —arccos$l — 2\ . A2
keff ™ o ¢ P (A2) relations between the three neural networks:
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o B E We use a pseudorandom number generator to determine
k k, eff k, eff A B
= B BE A9 the values oh, h;, andh in each step. The application of
k— et Qk eff |- (A9) the rejection method21] ensures that the local fields have
S Rear  Qt the right joint probability distributiorP(hy, hE,hE). Then the

output bits o} of the hidden units are given by’
=sgr(hy). If =72+ 7= the hidden unik with the smallest
absolute local fieldhS| is searched and its outpuf is in-

From the tensofabe and the variablea}' one can easily
calculate the elements ¢f;:

L verted (geometric attack Afterwards the usual training of
Q= X afk,,, (A10)  the neural networks takes place.
abe=-L The equation of motion for tensor eIemerf@O,e away
from the boundary-L <a,b,e<L) is given by
A B E

E b2 e (A1) e I TNCTNCT Mo

abe=—L abe™ 2 arAR b+AB er AT
A
M k_AAb AB AE+ 1)\Af _AA b+AB e_,_AE
2 K e (A12) 2 a . a

a,b,e=-L

1
A
7‘ fa+AA b-APe-AF + )\kfa+AA b-AP erAl

L

=(1-2¢-22) X abfy,,  (AL3)

a,b,e=—L + )\kf E+ )\kf

a-ARb+AR e-AF arAR b+AB e-AF

L

E=(1-20-20) 3 aek,. (Al4) M shp-aB oea- (A16)
a,b,e=-L
Similar equations can be derived for elements on the
L boundary. An attacker is considered successful if one of the
REE,=(1-28-220) X bef, .. (A15)  conditionsp®£=0.9 orp®E=0.9 is achieved earlier than the
' abe=-L v synchronization criteriop”=0.9.
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